高中数学函数的对称性知识点
高中数学函数的对称性知识点汇总高中数学教学中,函数是一个 非常重要的内容,它是整个高中数学教学中的中心内容,同时还是学习高中数学的基础知识。在每年的高考和竞赛中,函数都是热点与重点,下面是小编整理的高中数学函数的对称性知识点,希望对您有所帮助。
http://kuailexuexi.net/data/attachment/forum/20240917/1726546035371_0.jpg
高中数学函数的对称性知识点
一、函数自身的对称性探究
定理1.函数 y = f (x)的图像关于点A (a ,b)对称的充要条件是
f (x) + f (2a-x) = 2b
证明:(必要性)设点P(x ,y)是y = f (x)图像上任一点,∵点P( x ,y)关于点A (a ,b)的对称点P'(2a-x,2b-y)也在y = f (x)图像上,∴ 2b-y = f (2a-x)
即y + f (2a-x)=2b故f (x) + f (2a-x) = 2b,必要性得证。
(充分性)设点P(x0,y0)是y = f (x)图像上任一点,则y0 = f (x0)
∵ f (x) + f (2a-x) =2b∴f (x0) + f (2a-x0) =2b,即2b-y0 = f (2a-x0) 。
故点P'(2a-x0,2b-y0)也在y = f (x) 图像上,而点P与点P'关于点A (a ,b)对称,充分性得征。
推论:函数 y = f (x)的图像关于原点O对称的充要条件是f (x) + f (-x) = 0
定理2. 函数 y = f (x)的图像关于直线x = a对称的充要条件是
f (a +x) = f (a-x) 即f (x) = f (2a-x) (证明留给读者)
推论:函数 y = f (x)的图像关于y轴对称的充要条件是f (x) = f (-x)
定理3. ①若函数y = f (x) 图像同时关于点A (a ,c)和点B (b ,c)成中心对称(a≠b),则y = f (x)是周期函数,且2 a-b是其一个周期。
②若函数y = f (x) 图像同时关于直线x = a 和直线x = b成轴对称 (a≠b),则y = f (x)是周期函数,且2 a-b是其一个周期。
③若函数y = f (x)图像既关于点A (a ,c) 成中心对称又关于直线x =b成轴对称(a≠b),则y = f (x)是周期函数,且4 a-b是其一个周期。
①②的证明留给读者,以下给出③的证明:
∵函数y = f (x)图像既关于点A (a ,c) 成中心对称,
∴f (x) + f (2a-x) =2c,用2b-x代x得:
f (2b-x) + f =2c………………(*)
又∵函数y = f (x)图像直线x =b成轴对称,
∴ f (2b-x) = f (x)代入(*)得:
f (x) = 2c-f …………(**),用2(a-b)-x代x得
f = 2c-f 代入(**)得:
f (x) = f ,故y = f (x)是周期函数,且4 a-b是其一个周期。
二、不同函数对称性的探究
定理4. 函数y = f (x)与y = 2b-f (2a-x)的图像关于点A (a ,b)成中心对称。
定理5. ①函数y = f (x)与y = f (2a-x)的图像关于直线x = a成轴对称。
②函数y = f (x)与a-x = f (a-y)的图像关于直线x +y = a成轴对称。
③函数y = f (x)与x-a = f (y + a)的图像关于直线x-y = a成轴对称。
定理4与定理5中的①②证明留给读者,现证定理5中的③
设点P(x0 ,y0)是y = f (x)图像上任一点,则y0 = f (x0)。记点P( x ,y)关于直线x-y = a的轴对称点为P'(x1, y1),则x1 = a + y0 , y1 = x0-a ,∴x0 = a + y1 , y0= x1-a 代入y0 = f (x0)之中得x1-a = f (a + y1) ∴点P'(x1, y1)在函数x-a = f (y + a)的图像上。
同理可证:函数x-a = f (y + a)的图像上任一点关于直线x-y = a的轴对称点也在函数y = f (x)的图像上。故定理5中的③成立。
推论:函数y = f (x)的图像与x = f (y)的图像关于直线x = y 成轴对称。
三、三角函数图像的'对称性列表
注:①上表中k∈Z
②y = tan x的所有对称中心坐标应该是(kπ/2 ,0 ),而在岑申、王而冶主编的浙江教育出版社出版的21世纪高中数学精编第一册(下)及陈兆镇主编的广西师大出版社出版的高一数学新教案(修订版)中都认为y = tan x的所有对称中心坐标是( kπ, 0 ),这明显是错的。
四、函数对称性应用举例
例1:定义在R上的非常数函数满足:f (10+x)为偶函数,且f (5-x) = f (5+x),则f (x)一定是( )(第十二届希望杯高二 第二试题)
(A)是偶函数,也是周期函数(B)是偶函数,但不是周期函数
(C)是奇函数,也是周期函数(D)是奇函数,但不是周期函数
解:∵f (10+x)为偶函数,∴f (10+x) = f (10-x).
∴f (x)有两条对称轴 x = 5与x =10 ,因此f (x)是以10为其一个周期的周期函数, ∴x =0即y轴也是f (x)的对称轴,因此f (x)还是一个偶函数。
故选(A)
例2:设定义域为R的函数y = f (x)、y = g(x)都有反函数,并且f(x-1)和g-1(x-2)函数的图像关于直线y = x对称,若g(5) = 1999,那么f(4)=( )。
(A)1999; (B)2000; (C)2001; (D)2002。
解:∵y = f(x-1)和y = g-1(x-2)函数的图像关于直线y = x对称,
∴y = g-1(x-2) 反函数是y = f(x-1),而y = g-1(x-2)的反函数是:y = 2 + g(x), ∴f(x-1) = 2 + g(x), ∴有f(5-1) = 2 + g(5)=2001
故f(4) = 2001,应选(C)
例3.设f(x)是定义在R上的偶函数,且f(1+x)= f(1-x),当-1≤x≤0时,
f (x) = - x,则f (8.6 ) = _________ (第八届希望杯高二 第一试题)
解:∵f(x)是定义在R上的偶函数∴x = 0是y = f(x)对称轴;
又∵f(1+x)= f(1-x) ∴x = 1也是y = f (x) 对称轴。故y = f(x)是以2为周期的周期函数,∴f (8.6 ) = f (8+0.6 ) = f (0.6 ) = f (-0.6 ) = 0.3
例4.函数 y = sin (2x + )的图像的一条对称轴的方程是( )(92全国高考理) (A) x = - (B) x = - (C) x = (D) x =
解:函数 y = sin (2x + )的图像的所有对称轴的方程是2x + = k +
∴x = - ,显然取k = 1时的对称轴方程是x = - 故选(A)
例5. 设f(x)是定义在R上的奇函数,且f(x+2)= -f(x),当0≤x≤1时,
f (x) = x,则f (7.5 ) = ( )
(A) 0.5(B)-0.5(C) 1.5(D) -1.5
解:∵y = f (x)是定义在R上的奇函数,∴点(0,0)是其对称中心;
又∵f (x+2 )= -f (x) = f (-x),即f (1+ x) = f (1-x), ∴直线x = 1是y = f (x) 对称轴,故y = f (x)是周期为2的周期函数。
∴f (7.5 ) = f (8-0.5 ) = f (-0.5 ) = -f (0.5 ) =-0.5 故选(B)
高中函数的知识点总结
1. 函数的奇偶性
(1)若f(x)是偶函数,那么f(x)=f(-x) ;
(2)若f(x)是奇函数,0在其定义域内,则 f(0)=0(可用于求参数);
(3)判断函数奇偶性可用定义的等价形式:f(x)±f(-x)=0或 (f(x)≠0);
(4)若所给函数的解析式较为复杂,应先化简,再判断其奇偶性;
(5)奇函数在对称的单调区间内有相同的单调性;偶函数在对称的单调区间内有相反的单调性;
2. 复合函数的有关问题
(1)复合函数定义域求法:若已知 的定义域为,其复合函数f的定义域由不等式a≤g(x)≤b解出即可;若已知f的定义域为,求 f(x)的定义域,相当于x∈时,求g(x)的值域(即 f(x)的定义域);研究函数的问题一定要注意定义域优先的原则。
(2)复合函数的单调性由“同增异减”判定;
3.函数图像(或方程曲线的对称性)
(1)证明函数图像的对称性,即证明图像上任意点关于对称中心(对称轴)的对称点仍在图像上;
(2)证明图像C1与C2的对称性,即证明C1上任意点关于对称中心(对称轴)的对称点仍在C2上,反之亦然;
(3)曲线C1:f(x,y)=0,关于y=x+a(y=-x+a)的对称曲线C2的方程为f(y-a,x+a)=0(或f(-y+a,-x+a)=0);
(4)曲线C1:f(x,y)=0关于点(a,b)的对称曲线C2方程为:f(2a-x,2b-y)=0;
(5)若函数y=f(x)对x∈R时,f(a+x)=f(a-x)恒成立,则y=f(x)图像关于直线x=a对称;
(6)函数y=f(x-a)与y=f(b-x)的图像关于直线x= 对称;
4.函数的周期性
(1)y=f(x)对x∈R时,f(x +a)=f(x-a) 或f(x-2a )=f(x) (a0)恒成立,则y=f(x)是周期为2a的周期函数;
(2)若y=f(x)是偶函数,其图像又关于直线x=a对称,则f(x)是周期为2︱a︱的周期函数;
(3)若y=f(x)奇函数,其图像又关于直线x=a对称,则f(x)是周期为4︱a︱的周期函数;
(4)若y=f(x)关于点(a,0),(b,0)对称,则f(x)是周期为2 的周期函数;
(5)y=f(x)的图象关于直线x=a,x=b(a≠b)对称,则函数y=f(x)是周期为2 的周期函数;
(6)y=f(x)对x∈R时,f(x+a)=-f(x)(或f(x+a)= ,则y=f(x)是周期为2 的周期函数;
5.
方程k=f(x)有解 k∈D(D为f(x)的值域);
6.
a≥f(x) 恒成立 a≥max,; a≤f(x) 恒成立 a≤min;
7.
(1) (a0,a≠1,b0,n∈R+);
(2) l og a N= ( a0,a≠1,b0,b≠1);
(3) l og a b的符号由口诀“同正异负”记忆;
(4) a log a N= N ( a0,a≠1,N
8. 判断对应是否为映射时,抓住两点:
(1)A中元素必须都有象且唯一;
(2)B中元素不一定都有原象,并且A中不同元素在B中可以有相同的象;
9. 能熟练地用定义证明函数的单调性,求反函数,判断函数的奇偶性。
10.对于反函数,应掌握以下一些结论:
(1)定义域上的单调函数必有反函数;
(2)奇函数的反函数也是奇函数;
(3)定义域为非单元素集的偶函数不存在反函数;
(4)周期函数不存在反函数;
(5)互为反函数的两个函数具有相同的单调性;
(5) y=f(x)与y=f-1(x)互为反函数,设f(x)的定义域为A,值域为B,则有f=x(x∈B),f--1=x(x∈A).
11.处理二次函数的问题勿忘数形结合;二次函数在闭区间上必有最值,求最值问题用“两看法”:
一看开口方向;
二看对称轴与所给区间的相对位置关系;
12. 依据单调性,利用一次函数在区间上的保号性可解决求一类参数的范围问题
13. 恒成立问题的处理方法:
(1)分离参数法;(2)转化为一元二次方程的根的分布列不等式(组)求解;
【高中数学函数的对称性知识点】相关文章:
高中数学函数知识点04-26
高中数学函数知识点归纳07-25
高中数学知识点:函数10-25
高中数学函数的基本知识点10-17
高中数学函数知识点总结范文07-20
高中数学:函数的基本知识点09-06
高中数学知识点整理:幂函数的性质09-22
高中数学知识点:函数的极值与导数的关系03-31
高中数学幂函数的性质总结09-19
页:
[1]