高中数学练习题及答案
高中数学练习题及答案数学是人类对事物的抽象结构与模式进行严格描述的一种通用手段,可以应用于现实世界的任何问题,所有的数学对象本质上都是人为定义的。以下是小编为大家收集的高中数学练习题及答案,欢迎大家借鉴与参考,希望对大家有所帮助。
http://kuailexuexi.net/data/attachment/forum/20240922/1726967175236_0.jpg
高中数学练习题及答案1
1.3 交集、并集
若集合A={x|x是6的倍数},B={x|x是4的倍数},则A与B有公共元素吗?它们的公共元素能组成一个集合吗?
两个集合A与B的公共元素能组成一个集合吗?若能组成一个集合C,则C与A、B的关系如何?
基础巩固
1.若集合A={0,1,2,3,4},B={1,2,4}则AB=()
A.{0,1,2,3,4} B.{1,2,3,4}
C.{1,2} D.{0}
答案:A
2.设S={x||x|3},T={x|3x-51},则ST=()
A. B.{x|-33}
C.{x|-32} D.{x|23}
答案:C
3.已知A,B均为集合U={1,3,5,7,9}的子集,且AB={3}, AUB={9},则A=()
A.{1,3} B.{3,7,9}
C.{3,5,9} D.{3,9}
答案:D
4.设A={(x,y)|4x+y=6},B={(x,y)|3x+2y=7},则AB为()
A.{x=1,或y=2} B.{1,2}
C.{(1,2)} D.(1,2)
解析:AB=x,y4x+y=63x+2y=7={(1,2)}.
答案:C
5.已知集合A={(x,y)|x,yR且x2+y2=1},B={(x,y)|x,yR且x+y=1,则AB的元素个数为()
A.4个 B.3个 C.2个 D.1个
解析:由x2+y2=1,x+y=1x=1,y=0或x=0,y=1,
即AB={(1,0),(0,1)}.
答案:C
6.已知全集U={0,1,2,3,4},集合A={1,2,3},B={2,4},则(UA)B为()
A.{1,2,4} B.{2,3,4}
C.{0,2,4} D.{0,2,3,4}
答案:C
7.已知方程x2-px+15=0与x2-5x+q=0的'解分别为M和S,且MS={3},则pq=________.
解析:∵MS={3},
3既是方程x2-px+15=0的根,又是x2-5x+q=0的根,从而求出p,q.
答案:43
8.已知全集S=R,A={x|x1},B={x|05},则(SA)B=________.
解析:SA={x|x1}.
答案:{x|15}
9.设集合A={x||x-a|1,xR},B={x|15},若AB=,则a的取值范围是________.
解析:∵A={x|a-1a+1},若AB=,则a+11或a-1a0或a6.
答案:{a|a0或a6}
10.设集合A={0,1,2,3,4,5,7},B={1,3,6,8,9},C={3,7,8},那么集合(AC是________.
答案:{1,3,7,8}
11.满足条件{1,3}A={1,3,5}的所有集合A的个数是________个.
答案:4
能力提升
12.集合A={x||x|1,xR},B={y|y=x2,xR},则AB为()
A.{x|-11} B.{x|x0}
C.{x|01} D.
解析:∵A={x|-11},B={y|y0}
AB={x|01}.
答案:C
13.若A、B、C为三个集合,且有AB=BC,则一定有()
A.AC B.CA
C.A D.A=
答案:A
14.设全集U={a,b,c,d},A={a,b},B={b,c,d},则UAUB=________
解析:UA={c,d},UB={a},
UAUB={a,c,d}.
答案:{a,c,d}
15.(2013上海卷)设常数aR,集合A={x|(x-1)(x-a)0},B={x|xa-1},若AB=R,则a的取值范围为________.
解析:当a1时,A={x|x1或xa},
要使AB=R,则a1,a-112;
当a1时,A={x|xa或x1},要使AB=R,则a1,a-1a1.
综上,a
答案:{a|a2}
16.已知集合A={x||x+2|3,xR},集合B={x|(x-m)(x-2)0},xR},且AB=(-1,n),求m和n的值.
解析:|x+2|-3x+2-51,
A={x|-51},又∵AB=(-1,n),
-1是方程(x-m)(x-2)=0的根,即m=-1,此时B={x|-12},AB=(-1,1),即n=1.
17.设集合P={1,2,3,4},求同时满足下列三个条件的集合A:
(1)AP;
(2)若xA,则2xA;
(3)若xPA,则2xPA.
解析:∵21=2,22=4,因此1和2不能同时属于A,也不能同时属于UA,同样地,2和4也不能同时属于A和UA,对P的子集进行考查,可知A只能为:{2},{1,4},{2,3}{1,3,4}.
18.设集合A={x|x+10或x-40},B={x|2aa+2}.
(1)若A,求实数a的取值范围;
(2)若AB=B,求实数a的取值范围.
解析:(1)A={x|x-1或x4},
∵A,
2a2+a,a+24或2aa+2,2a-1.
a=2或a-12.
综上所述,实数a的取值范围为aa-12或a=2.
(2)∵AB=B,BA.
①B=时,满足BA,则2aa+22,
②B时,则
2aa+2,a+2-1或2aa+2,2a4.
即a-3或a=2.
综上所述,实数a的取值范围为{a|a-3或a=2}.
高中数学练习题及答案2
1.1 集合的含义及其表示
一位渔民非常喜欢数学,但他怎么也不明白集合的意义,于是他请教数学家:“尊敬的先生,请您告诉我,集合是什么?”集合是不定义的原始概念,数学家很难回答那位渔民,有一天,他来到渔民的船上,看到渔民撒下鱼网,轻轻一拉,许多鱼虾在网上跳动,数学家非常激动,高兴地告诉渔民:“这就是集合!”你能理解数学家的话吗?
基础巩固
1.下列说法正确的是()
A.我校爱好足球的同学组成一个集合
B.{1,2,3}是不大于3的自然数组成的集合
C.集合{1,2,3,4,5}和{5,4,3,2,1}表示同一集合
D.数1,0,5,12,32,64, 14组成的集合有7个元素
答案:C
2.若集合A={-1,1},B={0,2},则集合{z|z=x+y,xA,yB}中的元素个数为()
A.5个 B.4个 C.3个 D.2个
答案:C
3.下列四个关系中,正确的是()
A.a{a,b} B.{a}{a,b}
C.a{a} D.a{a,b}
答案:A
4.集合M={(x,y)|xy0,xR,yR}是()
A.第一象限内的点集
B.第三象限内的点集
C.第四象限内的点集
D.第二、四象限内的点集
解析:集合M为点集且横、纵坐标异号,故是第二、四象限内的点集.
答案:D
5.若A={(2,-2),(2,2)},则集合A中元素的个数是()
A.1个 B.2个 C.3个 D.4个
答案:B
6.集合M中的元素都是正整数,且若aM,则6-aM,则所有满足条件的集合M共有()
A.6个 B.7个 C.8个 D.9个
解析:由题意可知,集合M中包含的元素可以是3,1和5,2和4中的一组,两组,三组,即M可为{3},{1,5},{2,4},{3,1,5},{3,2,4},{1,5,2,4},{3,1,5,2,4},共7个.
答案:B
7.下列集合中为空集的是()
A.{xN|x2 B.{xR|x2-1=0}
C.{xR|x2+x+1=0} D.{0}
答案:C
8.设集合A={2,1-a,a2-a+2},若4A,则a=()
A.-3或-1或2 B-3或-1
C.-3或2 D.-1或2
解析:当1-a=4时,a=-3,A={2,4,14};当a2-a+2=4时,得a=-1或2,当a=-1时,A={2,2,4},不满足互异性,当a=2时,A={2,4,-1}.a=-3或2.
答案:C
9.集合P={x|x=2k,kZ},Q={x|x=2k+1,kZ},M={x|x=4k+1,kZ},若aP,bQ,则有()
A.a+bP
B.a+bQ
C.a+bM
D.a+b不属于P、Q、M中任意一个
解析:∵aP,bQ,a=2k1,k1Z,b=2k2+1,k2Z,a+b=2(k1+k2)+1,k1,k2Z,a+bQ.
答案:B
10.由下列对象组成的集体,其中为集合的是________(填序号).
①不超过2的正整数;
②高一数学课本中的所有难题;
③中国的高山;
④平方后等于自身的实数;
⑤高一(2)班中考500分以上的学生.
答案:①④⑤
11.若a=n2+1,nN,A={x|x=k2-4k+5,kN},则a与A的关系是________.
解析:∵a=n2+1=(n+2)2-4(n+2)+5,且当nN时,n+2N.
答案:aA
12.集合A={x|xR且|x-2|5}中最小整数为_______.
解析:由|x-2|-5x-2-37,最小整数为-3.
答案:-3
13.一个集合M中元素m满足mN+,且8-mN+,则集合M的元素个数最多为________.
答案:7个
14.下列各组中的M、P表示同一集合的是________(填序号).
①M={3,-1},P={(3,-1)};
②M={(3,1)},P={(1,3)};
③M={y|y=x2-1,xR},P={a|a=x2-1,xR};
④M={y|y=x2-1,xR},P={(x,y)|y=x2-1,xR}.
答案:③
能力提升
15.已知集合A={x|xR|(a2-1)x2+(a+1)x+1=0}中有且仅有一个元素,求a的值.
解析:(1)若a2-1=0,则a=1.当a=1时,x=-12,此时A=-12,符合题意;当a=-1时,A=,不符合题意.
(2)若a2-10,则=0,即(a+1)2-4(a2-1)=0a=53,此时A=-34,符合题意.综上所述,a=1或53.
16.若集合A=a,ba,1又可表示为{a2,a+b,0},求a2014+b2013的值.
解析:由题知a0,故ba=0,b=0,a2=1,
a=1,
又a1,故a=-1.
a2014+b2013=(-1)2014+02013=1.
17.设正整数的集合A满足:“若xA,则10-xA”.
(1)试写出只有一个元素的集合A;
(2)试写出只有两个元素的集合A;
(3)这样的集合A至多有多少个元素?
解析:(1)令x=10-xx=5.故A={5}.
(2)若1A,则10-1=9A;反过来,若9A,则10-9=1A.因此1和9要么都在A中,要么都不在A中,它们总是成对地出现在A中.同理,2和8,3和7,4和6成对地出现在A中,故{1,9}或{2,8}或{3,7}或{4,6}为所求集合.
(3)A中至多有9个元素,A={1,9,2,8,3,7,4,6,5}.
18.若数集M满足条件:若aM,则1+a1-aM(a0,a1),则集合M中至少有几个元素?
解析:∵aM,1+a1-aM,1+1+a1-a1-1+a1-a=-1aM,
1-1a1+1a=a-1a+1M,1+a-1a+11-a-1a+1=aM.
∵a0且a1,a,1+a1-a,-1a,a-1a+1互不相等集合M中至少有4个元素.
【高中数学练习题及答案】相关文章:
高中数学试题检测及答案11-23
语文阅读练习题及答案05-26
雅思阅读练习题及答案11-01
中考地理练习题及答案01-25
徐州小考语文练习题及答案11-06
小考卷数学练习题及答案10-18
语文小考练习题及答案10-17
生物社会行为练习题及答案09-12
photoshop备考练习题及答案10-02
高一英语练习题及答案08-29
页:
[1]