admin 发表于 2024-9-29 06:06:16

初初中数学知识点总结范文

http://kuailexuexi.net/data/attachment/forum/20240929/1727561176180_0.jpg

篇1

一般地,自变量x和因变量y之间存在如下关系:y=ax^2+bx+c

(a,b,c为常数,a≠0,且a决定函数的开口方向,a>0时,开口方向向上,a

二次函数表达式的右边通常为二次三项式。

ii.二次函数的三种表达式

一般式:y=ax^2+bx+c(a,b,c为常数,a≠0)

顶点式:y=a(x-h)^2+k [抛物线的顶点p(h,k)]

交点式:y=a(x-x₁)(x-x ₂) [仅限于与x轴有交点a(x₁ ,0)和 b(x₂,0)的抛物线]

注:在3种形式的互相转化中,有如下关系:

h=-b/2a k=(4ac-b^2)/4a x₁,x₂=(-b±√b^2-4ac)/2a

iii.二次函数的图像

在平面直角坐标系中作出二次函数y=x^2的图像,可以看出,二次函数的图像是一条抛物线。

iv.抛物线的性质

1.抛物线是轴对称图形。对称轴为直线 x = -b/2a。

对称轴与抛物线唯一的交点为抛物线的顶点p。特别地,当b=0时,抛物线的对称轴是y轴(即直线x=0)

2.抛物线有一个顶点p,坐标为:p ( -b/2a ,(4ac-b^2)/4a )当-b/2a=0时,p在y轴上;当δ= b^2-4ac=0时,p在x轴上。

3.二次项系数a决定抛物线的开口方向和大小。

当a>0时,抛物线向上开口;当a

4.一次项系数b和二次项系数a共同决定对称轴的位置。

当a与b同号时(即ab>0),对称轴在y轴左;

当a与b异号时(即ab

5.常数项c决定抛物线与y轴交点。

抛物线与y轴交于(0,c)

6.抛物线与x轴交点个数

δ= b^2-4ac>0时,抛物线与x轴有2个交点。

δ= b^2-4ac=0时,抛物线与x轴有1个交点。

δ= b^2-4ac

v.二次函数与一元二次方程

特别地,二次函数(以下称函数)y=ax^2+bx+c,

当y=0时,二次函数为关于x的一元二次方程(以下称方程),即ax^2+bx+c=0

此时,函数图像与x轴有无交点即方程有无实数根。函数与x轴交点的横坐标即为方程的根。

1.二次函数y=ax^2,y=a(x-h)^2,y=a(x-h)^2 +k,y=ax^2+bx+c(各式中,a≠0)的图象形状相同,只是位置不同,它们的顶点坐标及对称轴:

当h>0时,y=a(x-h)^2的图象可由抛物线y=ax^2向右平行移动h个单位得到,

当h

当h>0,k>0时,将抛物线y=ax^2向右平行移动h个单位,再向上移动k个单位,就可以得到y=a(x-h)^2 +k的图象;

当h>0,k

当h0时,将抛物线向左平行移动|h|个单位,再向上移动k个单位可得到y=a(x-h)^2+k的图象;

当h

因此,研究抛物线 y=ax^2+bx+c(a≠0)的图象,通过配方,将一般式化为y=a(x-h)^2+k的形式,可确定其顶点坐标、对称轴,抛物线的大置就很清楚了.这给画图象提供了方便.

2.抛物线y=ax^2+bx+c(a≠0)的图象:当a>0时,开口向上,当a

3.抛物线y=ax^2+bx+c(a≠0),若a>0,当x ≤ -b/2a时,y随x的增大而减小;当x ≥ -b/2a时,y随x的增大而增大.若a

4.抛物线y=ax^2+bx+c的图象与坐标轴的交点:

(1)图象与y轴一定相交,交点坐标为(0,c);

(2)当=b^2-4ac>0,图象与x轴交于两点a(x₁,0)和b(x₂,0),其中的x1,x2是一元二次方程ax^2+bx+c=0

(a≠0)的两根.这两点间的距离ab=|x₂-x₁|

当=0.图象与x轴只有一个交点;

当0时,图象落在x轴的上方,x为任何实数时,都有y>0;当a

5.抛物线y=ax^2+bx+c的最值:如果a>0(a

顶点的横坐标,是取得最值时的自变量值,顶点的纵坐标,是最值的取值

6.用待定系数法求二次函数的解析式

(1)当题给条件为已知图象经过三个已知点或已知x、y的三对对应值时,可设解析式为一般形式:

y=ax^2+bx+c(a≠0).

(2)当题给条件为已知图象的顶点坐标或对称轴时,可设解析式为顶点式:y=a(x-h)^2+k(a≠0).
页: [1]
查看完整版本: 初初中数学知识点总结范文