admin 发表于 2024-9-29 08:07:05

最新最全人教版高中数学知识点汇总(全册版)(精华).docx

人教版高中数学知识点(必修+选修)高中数学必修1知识点第一章集合与函数概念【1。1。1】集合的含义与表示(1)集合的概念集合中的元素具有确定性、互异性和无序性(2)常用数集及其记法。NNZ表示整数集,Q表示有理数集,R表示实数集。N表示正整数集,表示自然数集,或(3)集合与元素间的关系对象a与集合M的关系是(4)集合的表示法aMaM,或者,两者必居其一。①自然语言法:用文字叙述的形式来描述集合。②列举法:把集合中的元素一一列举出来,写在大括号内表示集合。③描述法:{x|x具有的性质},其中x为集合的代表元素。④图示法:用数轴或韦恩图来表示集合。(5)集合的分类①含有有限个元素的集合叫做有限集。②含有无限个元素的集合叫做无限集。③不含有任何元素的集合叫做空集()。【1。1。2】集合间的基本关系(6)子集、真子集、集合相等名称记号意义性质示意图(1)AAA(或BAB且BB且B(2)(3)若(4)若(1)A中的任一元素都属A(B)子集BA于BAACAACB,则BA)A,则或A(A为非空子集)ABAB,且B中至真子集(或A)AB且BCACBA(2)若,则少有一元素不属于ABA中的任一元素都属于B,B中的任一元素都属于A集合相等(1)AB(2)BAA(B)AB2n2nn2A有n(n1)个元素,则它有1个真子集,它有(7)已知集合个子集,它有1个非空子2n2非空真子集。

集,它有精品资料精品学习资料第1页,共75页【1。1。3】集合的基本运算(8)交集、并集、补集名称记号意义性质示意图AAAAA(1)(2)(3)A(1)(2)(3)A{x|xxA,B}且AB交集ABBABBAAAAAAA{x|xxA,B}或AB并集BABBB1A2A(eUA)U(eUA){x|xU,且xA}痧U(A痧U(AB)(UA)(?UB)补集eUAB)(A)(?UB)U【补充知识】含绝对值的不等式与一元二次不等式的解法(1)含绝对值的不等式的解法不等式解集a|x||x|a(aa(a0)0){x|x|x看成一xa}a}ax或axb|x|a把个整体,化成,|x|a(a0)型不等式来求解|axb|c,|axb|c(c0)(2)一元二次不等式的解法判别式0002b4ac二次函数yax2bx的图象c(a0)Ob22ax2)b4ac一元二次方程x1,2b2a2x1x2axbxc的根0(a0)无实根(其中x1精品资料精品学习资料第2页,共75页2b2aaxbxc0(a0){x|xx1或xx2}{x|x}R的解集2axbxc0(a0){x|x1xx2}的解集〖1。2〗函数及其表示【1。2。1】函数的概念(1)函数的概念,对于集合A中任何一个数x,在集合①设A、是两个非空的数集,如果按照某种对应法则Bf中都有唯一确定的数f(x)和它对应,那么这样的对应(包括集合BA,以及A到的对应法BBfA到Bf:AB.则)叫做集合的一个函数,记作②函数的三要素:定义域、值域和对应法则.③只有定义域相同,且对应法则也相同的两个函数才是同一函数.(2)区间的概念及表示法ab,满足axb的实数x的集合叫做闭区间,记做①设a,b是两个实数,且;满足axb的实数x的集合叫做开区间,记做(a,b);满足axb,或axb,xb的实数b的实数x的x的,b)xa,xa,x集合叫做半开半闭区间,分别记做,;满足,(集合分别记做.a可以大于或等于b,而后者必须{x|axb}(a,b),前者注意:对于集合与区间ab.(3)求函数的定义域时,一般遵循以下原则:f(x)f(x)①是整式时,定义域是全体实数.②是分式函数时,定义域是使分母不为零的一切实数.③f(x)是偶次根式时,定义域是使被开方式为非负值时的实数的集合.④对数函数的真数大于零,当对数或指数函数的底数中含变量时,底数须大于零且不等于1.ytanx中,(kZ).xk⑤ 2 ⑥零(负)指数幂的底数不能为零. ⑦若f ( x) 是由有限个基本初等函数的四则运算而合成的函数时,则其定义域一般是各基本初等函数 的定义域的交集. ⑧对 于 求 复 合 函 数 定 义 域 问 题 , 一 般 步骤是: 若已知f ( x)的 定 义 域 为 [ a,b ], 其 复合 函 数 f [ g ( x)] 的定义域应由不等式ag (x)b 解出. ⑨对于含字母参数的函数,求其定义域,根据问题具体情况需对字母参数进行分类讨论. ⑩由实际问题确定的函数,其定义域除使函数有意义外,还要符合问题的实际意义. ( 4)求函数的值域或最值 求函数最值的常用方法和求函数值域的方法基本上是相同的.事实上,如果在函数的值域中存在一个 最小(大)数,这个数就是函数的最小(大)值.因此求函数的最值与值域,其实质是相同的,只是 精品资料精品学习资料第 3 页,共 75 页提问的角度不同.求函数值域与最值的常用方法: ①观察法:对于比较简单的函数,我们可以通过观察直接得到值域或最值. ②配方法:将函数解析式化成含有自变量的平方式与常数的和,然后根据变量的取值范围确定函数 的值域或最值. yf ( x) 可以化成一个系数含有y 的关于 x的二次方程③判别式法:若函数 2 ,则在 a( y)0 时,由于 x, y 为实数,故必须有a( y) xb( y) xc( y)0 2 b( y)4a( y)c( y)0 ,从而确定函数的值域或最值. ④不等式法:利用基本不等式确定函数的值域或最值. ⑤换元法:通过变量代换达到化繁为简、化难为易的目的,三角代换可将代数函数的最值问题转化为 三角函数的最值问题. ⑥反函数法:利用函数和它的反函数的定义域与值域的互逆关系确定函数的值域或最值. ⑦数形结合法:利用函数图象或几何方法确定函数的值域或最值. ⑧函数的单调性法. 【 1。

2。2 】函数的表示法 ( 5)函数的表示方法 表示函数的方法,常用的有解析法、列表法、图象法三种. 解析法:就是用数学表达式表示两个变量之间的对应关系.列表法:就是列出表格来表示两个变量之间 的对应关系.图象法:就是用图象表示两个变量之间的对应关系. ( 6)映射的概念 ①设 A 、是两个集合,如果按照某种对应法则Bf,对于集合A 中任何一个元素,在集合B 中都 A ,以及 A 到的对应法则BBf 有唯一的元素和它对应,那么这样的对应(包括集合)叫做集合 的映射,记作f: AB . 的映射,且 A 到 B a b 对应,那么我们把元②给定一个集合 A 到集合 素 b 叫做元素 a 的象,元素 BaA,b B .如果元素 和元素 a 叫做元素 b 的原象. 〖 1。3 〗函数的基本性质 【1。3。1】单调性与最大(小)值 ( 1)函数的单调性 ①定义及判定方法 函数的 性 质 定义图象判定方法 精品资料精品学习资料第 4 页,共 75 页如果对于属于定义域I内某( 1)利用定义 y y=f(X) 个区间上的任意两个自变量 的值x1 、x2 , 当x.1.
页: [1]
查看完整版本: 最新最全人教版高中数学知识点汇总(全册版)(精华).docx