中考数学知识点梳理
为了方便大家中考复习,这篇文章给大家分享数学中考的重要知识点,供大家参考学习。一元一次方程知识点
(一)方程:先设字母表示未知数,然后根据相等关系,写出含有未知数的等式叫做方程。
(二)一元一次方程
一元一次方程指只含有一个未知数、未知数的最高次数为1且两边都为整式的等式,叫做一元一次方程。求出方程中未知数的值叫做方程式的解。
(三)解方程式的步骤
解一元一次方程的步骤:去分母、去括号、移项、合并同类项、未知数系数化为1。
圆的知识点
(一)圆
在一个平面内,一动点以一定点为中心,以一定长度为距离旋转一周所形成的封闭曲线叫做圆。圆有无数条对称轴。
(二)圆的垂径定理
1.垂直于弦的直径平分这条弦,并且平分这条弦所对的两条弧。
2.弦的垂直平分线经过圆心,并且平分弦作对的两条弧。
3.平分弦所对的一条弧的直径,垂直平分弦,并且平分弦所对的另一条弧。
(三)圆的切线定理
1.垂直于过切点的半径;经过半径的外端点,并且垂直于这条半径的直线,是这个圆的切线。
2.切线的判定方法:经过半径外端并且垂直于这条半径的直线是圆的切线。
概率的相关知识点
1.一般地,在大量重复试验中,如果事件A发生的频率n/m会稳定在某个常数p附近,那么这个常数p就叫做事件A的概率。
2.随机事件:在一定的条件下可能发生也可能不发生的事件,叫做随机事件。
3.互斥事件:不可能同时发生的两个事件叫做互斥事件。
4.对立事件:即必有一个发生的互斥事件叫做对立事件。
5.必然事件:那些无需通过实验就能够预先确定它们在每一次实验中都一定会发生的事件称为必然事件。
6.不可能事件:那些在每一次实验中都一定不会发生的事件称为不可能事件。
7.等可能事件:通常一次实验中的某一事件由基本事件组成。如果一次实验中可能出现的结果有n个,即此实验由n个基本事件组成,而且所有结果出现的可能性都相等,那么这种事件就叫做等可能事件。
一元二次方程
(一)只含有一个未知数(一元),并且未知数项的最高次数是2(二次)的整式方程叫做一元二次方程。
一元二次方程经过整理都可化成一般形式aX²+bX+c=0(a≠0).其中aX²叫作二次项,a是二次项系数;bx叫作一次项,b是一次项系数;c叫作常数项。
(二)一元二次方程的解法
1.开平方法
形如(X-m)²=n (n≥0)一元二次方程可以直接开平方法求得解为X=m±√n。
①等号左边是一个数的平方的形式而等号右边是一个常数。
②降次的实质是由一个一元二次方程转化为两个一元一次方程。
③方法是根据平方根的意义开平方。
2.配方法
用配方法解一元二次方程的步骤:
①把原方程化为一般形式;
②方程两边同除以二次项系数,使二次项系数为1,并把常数项移到方程右边;
③方程两边同时加上一次项系数一半的平方;
④把左边配成一个完全平方式,右边化为一个常数;
⑤进一步通过直接开平方法求出方程的解,如果右边是非负数,则方程有两个实根;如果右边是一个负数,则方程有一对共轭虚根。
3.求根公式
用求根公式法解一元二次方程的一般步骤为:
①把方程化成一般形式aX²+bX+c=0,确定a,b,c的值(注意符号);
②求出判别式△=b²-4ac的值,判断根的情况。
当Δ>0时,x=[-b±(b²-4ac)^(1/2)]/2a,方程有两个不相等的实数根;
当Δ=0时,方程有两个相等的实数根;
当Δ<0时,方程无实数根,但有2个共轭复根。
页:
[1]