admin 发表于 2024-9-9 22:05:35

初中数学 | 数学必考三角函数公式汇总+记忆口诀,中考一定用的上!

初中数学公式中,不少同学最头痛的就是三角函数了,公式不但冗长还容易混淆,更别提在解题过程中能准确的应用起来了。为了能让大家熟练掌握三角函数,今天就从锐角三角函数开始,给大家汇总一下三角函数公式,并提供攻克口诀便于加强记忆!

1.锐角三角函数

锐角三角函数定义:

锐角角A的正弦(sin),余弦(cos)和正切(tan),余切(cot)以及正割(sec),余割(csc)都叫做角A的锐角三角函数。

正弦(sin):对边比斜边,即sinA=a/c

余弦(cos):邻边比斜边,即cosA=b/c

正切(tan):对边比邻边,即tanA=a/b

余切(cot):邻边比对边,即cotA=b/a

正割(sec):斜边比邻边,即secA=c/b

余割(csc):斜边比对边,即cscA=c/a

2.特殊角三角函数值

http://kuailexuexi.net/data/attachment/forum/20240909/1725890735502_0.webp

3.互余角的关系

sin(π-α)=cosα, cos(π-α)=sinα,

tan(π-α)=cotα, cot(π-α)=tanα.

4.平方关系

sin^2(α)+cos^2(α)=1

tan^2(α)+1=sec^2(α)

cot^2(α)+1=csc^2(α)

5.积的关系

sinα=tanα·cosα

cosα=cotα·sinα

tanα=sinα·secα

cotα=cosα·cscα

secα=tanα·cscα

cscα=secα·cotα

6.倒数关系

tanα·cotα=1

sinα·cscα=1

cosα·secα=1

7.诱导公式

公式一: 设α为任意角,终边相同的角的同一三角函数的值相等:

sin(2kπ+α)=sinα k∈z

cos(2kπ+α)=cosα k∈z

tan(2kπ+α)=tanα k∈z

cot(2kπ+α)=cotα k∈z

公式二: 设α为任意角,π+α的三角函数值与α的三角函数值之间的关系:

sin(π+α)=-sinα

cos(π+α)=-cosα

tan(π+α)=tanα

8.两角和差公式

(1)sin(A+B)=sinAcosB+cosAsinB

(2)sin(A-B)=sinAcosB-sinBcosA

(3)cos(A+B)=cosAcosB-sinAsinB

(4)cos(A-B)=cosAcosB+sinAsinB

(5)tan(A+B)=(tanA+tanB)/(1-tanAtanB)

(6)tan(A-B)=(tanA-tanB)/(1+tanAtanB)

(7)cot(A+B)=(cotAcotB-1)/(cotB+cotA)

(8)cot(A-B)=(cotAcotB+1)/(cotB-cotA)

http://kuailexuexi.net/data/attachment/forum/20240909/1725890735502_1.jpg

除了以上常考的三角函数公式外,掌握下面半角公式,积化和差和万能公式有利于快速解决选择题,达到事半功倍的效果哦!

1.半角公式

http://kuailexuexi.net/data/attachment/forum/20240909/1725890735502_2.webp

注:正负由α/2所在的象限决定。

2.积化和差,和差化积公式

(1)2sinAcosB=sin(A+B)+sin(A-B)

(2)2cosAsinB=sin(A+B)-sin(A-B)

(3)2cosAcosB=cos(A+B)-sin(A-B)

(4)-2sinAsinB=cos(A+B)-cos(A-B)

(5)sinA+sinB=2sin((A+B)/2)cos((A-B)/2)

(6)cosA+cosB=2cos((A+B)/2)sin((A-B)/2)

(7)tanA+tanB=sin(A+B)/cosAcosB

(8)tanA-tanB=sin(A-B)/cosAcosB

3.万能公式

http://kuailexuexi.net/data/attachment/forum/20240909/1725890735502_3.jpg

其实三角函数公式数量虽多,但大家只要能够做到理解其含义,公式间是可以相互推导的,当然在考试的时候由于解题时间有限,所以还是要在平时多加练习才能加强记忆哦!

最后小面要送大家一首三角函数记忆口诀,希望每个童鞋都能成功通过“三角函数”这道难关:

三角函数是函数,象限符号坐标注。

函数图象单位圆,周期奇偶增减现。

同角关系很重要,化简证明都需要。

正六边形顶点处,从上到下弦切割;

中心记上数字1,连结顶点三角形;

向下三角平方和,倒数关系是对角,

顶点任意一函数,等于后面两根除。

诱导公式就是好,负化正后大化小,

变成税角好查表,化简证明少不了。

二的一半整数倍,奇数化余偶不变,

将其后者视锐角,符号原来函数判。

两角和的余弦值,化为单角好求值,

余弦积减正弦积,换角变形众公式。

和差化积须同名,互余角度变名称。

计算证明角先行,注意结构函数名,

保持基本量不变,繁难向着简易变。

逆反原则作指导,升幂降次和差积。

条件等式的证明,方程思想指路明。

万能公式不一般,化为有理式居先。

公式顺用和逆用,变形运用加巧用;

1加余弦想余弦, 1减余弦想正弦,

幂升一次角减半,升幂降次它为范;

三角函数反函数,实质就是求角度,

先求三角函数值,再判角取值范围;

利用直角三角形,形象直观好换名,

简单三角的方程,化为最简求解集。

【中招网-2024届陕西中考升学无忧群】现在面向西北五省家长限时开放(若有其他地区家长想进群了解同样欢迎,需注意本群目前不对西北五省以外地区中考做针对性活动),零条件入群,现在扫码,即能先人一步掌握初三升学信息!赶快行动起来吧!

扫码入群领取资料
页: [1]
查看完整版本: 初中数学 | 数学必考三角函数公式汇总+记忆口诀,中考一定用的上!